Abstract

In this paper, we construct generic, spherically symmetric thin-shell wormholes and check their stabilities using the unified dark sector, including dark energy and dark matter. We give a master equation, from which one can recover, as a special case, other stability solutions for generic spherically symmetric thin-shell wormholes. In this context, we consider a particular solution; namely we construct an effective thin-shell wormhole under Lorentz symmetry breaking. We explore stability analyses using different models of the modified Chaplygin gas with constraints from cosmological observations such as seventh-year full Wilkinson microwave anisotropy probe data points, type Ia supernovae, and baryon acoustic oscillation. In all these models we find stable solutions by choosing suitable values for the parameters of the Lorentz symmetry breaking effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.