Abstract

Parsimony methods infer phylogenetic trees by minimizing number of character changes required to explain observed character states. From the perspective of applicability of parsimony methods, it is important to assess whether the characters used to infer phylogeny are likely to provide a correct tree. We introduce a graph theoretical characterization that helps to assess whether given set of characters is appropriate to use with parsimony methods. Given a set of characters and a set of taxa, we construct a network called character overlap graph. We show that the character overlap graph for characters that are appropriate to use in parsimony methods is characterized by significant under-representation of subnetworks known as holes, and provide a validation for this observation. This characterization explains success in constructing evolutionary trees using parsimony method for some characters (e.g., protein domains) and lack of such success for other characters (e.g., introns). In the latter case, the understanding of obstacles to applying parsimony methods in a direct way has lead us to a new approach for detecting inconsistent and/or noisy data. Namely, we introduce the concept of stable characters which is similar but less restrictive than the well known concept of pairwise compatible characters. Application of this approach to introns produces the evolutionary tree consistent with the Coelomata hypothesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.