Abstract

Background: The objective was to determine the optimal connector size and position within zirconia disks for implant-supported cantilever fixed dental prostheses (ICFDP). Methods: Two-unit ICFDPs (n = 60) were designed for the premolar region with connector sizes of either 9 or 12 mm2 and positioned in the enamel or dentin layer of two different types of zirconia disks. The restorations were milled and cemented onto zirconia implants. After simulated chewing for 1.2 Mio cycles, the fracture load was measured and fractures were analyzed. Results: No fractures of ICFDPs or along the implants were detected after simulated aging. The mean fracture load values were significantly higher for a connector size of 9 mm2 (951 N) compared with 12 mm2 (638 N). For the zirconia material with a higher biaxial flexural strength, the fracture load values were increased from 751 to 838 N, but more implant fractures occurred. The position within the zirconia disk did not influence the fracture load. Conclusions: A connector size of 9 mm2 and a zirconia material with a lower strength should be considered when designing ICFDPS on zirconia implants to reduce the risk of fractures along the intraosseous implant portion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.