Abstract
The stability of a spinning liquid-filled spacecraft has been investigated in the present paper. Using Galerkin's method, the attitude dynamic equations have been given. The Liapunov direct method was employed to obtain a sufficient condition for stability. Three kinds of characteristic modals were investigated: free motion of inviscid fluid, slosh motion and non-slosh motion. All characteristic problems can be solved numerically by the Finite Element Method or the Boundary Element Method. It has been demonstrated that the viscosity of the fluid has a dissipative effect at large Reynolds number, while the slosh motion plays a destabilizing role. The non-slosh model of fluid does not affect the stability criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.