Abstract

In this paper, we study the amount of information contained in the Steklov spectrum of some compact manifolds with connected boundary equipped with a warped product metric. Examples of such manifolds can be thought of as deformed balls in $${\mathbb {R}}^d$$ . We first prove that the Steklov spectrum determines uniquely the warping function of the metric. We show in fact that the approximate knowledge (in a given precise sense) of the Steklov spectrum is enough to determine uniquely the warping function in a neighbourhood of the boundary. Second, we provide stability estimates of log-type on the warping function from the Steklov spectrum. The key element of these stability results relies on a formula that, roughly speaking, connects the inverse data (the Steklov spectrum) to the Laplace transform of the difference of the two warping factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.