Abstract

The IEEE 1547 standard addresses the integration of Distributed Energy Resources (DER) into Area Electric Power Systems (AEPS). The updated standard, released in 2018 with revisions ongoing, specifies the need for more flexible settings, requiring the DER to remain connected during certain disturbances and provide voltage support via active and reactive power modes. With these increased capabilities comes increased risks, and our analysis of the standard has produced potential settings combinations, which, while allowable under the standard, may actually create instability. This contradicts the main purpose of the revised standard. Since the DER must support a communication interface through which the AEPS operator can change settings, adversarial mode changes are possible via a cyberattack. This concern is heightened as DER penetration increases, where under a reasonable threat model, an attacker could affect multiple DER simultaneously. We have conducted a simulation analysis of potentially adverse combinations of mode change and ride-through parameters on a hypothetical AEPS with varying degrees of DER penetration. We conclude that certain adverse mode changes, whether through error or cyberattack, can lead to unstable conditions with DER penetrations as low as 24% of the AEPS system capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.