Abstract

Ramucirumab (RAMU) is a recently US Food and Drug Administration-approved monoclonal antibody that is included in various anticancer protocols. It has a structural complexity and high degradation risk that have a significant effect on its safety and effectiveness. The major aim of this work was to assess the degradation pattern of RAMU based on physicochemical characterization. Mechanical agitation, repeated freeze-thaw cycles, pH and temperature were the selected stress conditions to which RAMU samples were subjected. The SE-HPLC method was applied and validated to monitor the RAMU monomer along with its aggregates and/or fragments. The purity of the separated peaks together with system suitability parameters were determined through the calculation of percentage purity and percentage drop in RAMU concentration. The results were interpreted by correlating them with those of dynamic light scattering and reducing and non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Samples incubated at pH2.0-10.0 and 37°C for up to 4weeks were analysed, recording detection of reversed phase (RP) aggregates and low molecular weight peptide fragments. Similarly, samples under short-term storage conditions of 4weeks at different temperatures (-20, 2-8, 25, 37 and 50°C) showed low molecular weight peptide fragments but to a lesser extent. These results highlight the alarming effect on RAMU multidose vial efficacy and safety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.