Abstract
Quantum efficiencies and ultrafast dynamics of the ring-closure and ring-opening reaction of a trifluorinated dicyclopropyl indolylfulgide with improved photostability are investigated by stationary and ultrafast absorption spectroscopy. The ring-closure reaction occurs on the time scale of 200 fs and is found to be temperature independent ( T = 287–333 K). However, an activated behaviour is observed for the ring-opening reaction. A comparison with the corresponding non-substituted indolylfulgide shows that the dicyclopropyl group favours the open isomer via lower cyclisation and higher cycloreversion quantum efficiencies and faster dynamics of the ring-opening reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.