Abstract

Motivated by the great advance in graphene hydroxide--a versatile material with various applications--we performed density functional theory (DFT) calculations to study the functionalization of the two-dimensional hexagonal boron nitride (h-BN) sheet with hydroxyl (OH) radicals, which has been achieved experimentally recently. Particular attention was paid to searching for the most favorable site(s) for the adsorbed OH radicals on a h-BN sheet and addressing the roles of OH radical coverage on the stability and properties of functionalized h-BN sheet. The results indicate that, for an individual OH radica, the most stable configuration is that it is adsorbed on the B site of the h-BN surface with an adsorption energy of -0.88 eV and a magnetic moment of 1.00 μ(B). Upon adsorption of more than one OH radical on a h-BN sheet, however, these adsorbates prefer to adsorb in pairs on the B and its nearest N atoms from both sides of h-BN sheet without magnetic moment. An energy diagram of the average adsorption energy of OH radicals on h-BN sheet as a function of its coverage indicates that when the OH radical coverage reaches to 60 %, the functionalized h-BN sheet is the most stable among all studied configurations. More importantly, this configuration exhibits good thermal and dynamical stability at room temperature. Owing to the introduction of certain impurity levels, the band gap of h-BN sheet gradually decreases with increasing OH coverage, thereby enhancing its electrical conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.