Abstract
Abstract We consider various approximation properties for systems driven by a McKean–Vlasov stochastic differential equations (MVSDEs) with continuous coefficients, for which pathwise uniqueness holds. We prove that the solution of such equations is stable with respect to small perturbation of initial conditions, parameters and driving processes. Moreover, the unique strong solutions may be constructed by an effective approximation procedure. Finally, we show that the set of bounded uniformly continuous coefficients for which the corresponding MVSDE have a unique strong solution is a set of second category in the sense of Baire.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.