Abstract

A predator–prey system with stage structure for the predator and time delay due to the gestation of the predator is investigated. By analyzing the corresponding characteristic equations, the local stability of a positive equilibrium and two boundary equilibria of the system is discussed, respectively. Further, the existence of a Hopf bifurcation at the positive equilibrium is also studied. By using an iteration technique and comparison argument, respectively, sufficient conditions are derived for the global stability of the positive equilibrium and one of the boundary equilibria of the proposed system. As a result, the threshold is obtained for the permanence and extinction of the system. Numerical simulations are carried out to illustrate the main results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.