Abstract
A delayed three-component reaction–diffusion population model with Dirichlet boundary condition is investigated. The existence and stability of the positive spatially nonhomogeneous steady state solution are obtained via the implicit function theorem. Moreover, taking delay τ as the bifurcation parameter, Hopf bifurcation near the steady state solution is proved to occur at the critical value τ0. The direction of Hopf bifurcation is forward. In particular, by using the normal form theory and the center manifold reduction for partial functional differential equations, the stability of bifurcating periodic solutions occurring through Hopf bifurcations is investigated. It is demonstrated that the bifurcating periodic solution occurring at τ0 is orbitally asymptotically stable. Finally, the general results are applied to four types of three species population models. Numerical simulations are presented to illustrate our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.