Abstract

Metal polyhydrides have attracted considerable attention because some of them become a metal under high pressure, and some undergo a phase transition into a superconductor. Some superconducting metal polyhydrides have recently been discovered with a high value of critical temperature (Tc) under pressure. In this research, we calculated the structures of MgH2, MgH3 and MgD3 under pressure between 0-300 GPa in order to determine the formation enthalpy and electronic property of their structures under high pressure by using density functional theory (DFT) based on the Quantum Espresso code. We found that the band structures reveal the metallic character of the compounds under high pressure. The energy band structures of MgHx and MgDx are exactly the same. However, their phonon dispersions are different due to the so-called isotope effect. We determined the composition stability by using the convex hull of Mg, H and the compounds. We found that MgH3 becomes thermodynamically more stable than MgH2 at around 150 GPa. The results of phonons confirm that they are dynamically stable. This finding is served as a basis for future superconducting calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.