Abstract

<abstract> Based on the $ SIQR $ model, we consider the influence of time delay from infection to isolation and present a delayed differential equation (DDE) according to the characteristics of the COVID-19 epidemic phenomenon. First, we consider the existence and stability of equilibria in the above delayed $ SIQR $ model. Second, we analyze the existence of Hopf bifurcations associated with two equilibria, and we verify that Hopf bifurcations occur as delays crossing some critical values. Then, we derive the normal form for Hopf bifurcation by using the multiple time scales method for determining the stability and direction of bifurcation periodic solutions. Finally, numerical simulations are carried out to verify the analytic results. </abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.