Abstract
The Time Domain Integral Equation method for electromagnetics is an appealing computational method for many applications in industry. However, its applicability has long been suffering from instabilities. A rigorous analysis of the variational formulation is imperative to the successful design of stable and robust numerical schemes. In this paper, an established functional framework and stability theorem will be extended to the differentiated version of the electric field integral equations, which can be discretized more efficient and is more often used in engineering literature. The extended stability theorem, combined with efficiency requirements, will give guidelines on the choice of test and basis functions of the space–time Petrov–Galerkin scheme. A discrete equivalence with the collocation method results in the recommendation to choose the quadratic spline basis function in the standard Marching-on-in-Time scheme. Computational experiments confirm that the quadratic spline basis functions have superior stability characteristics compared to the conventional quadratic Lagrange basis functions in time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.