Abstract

Although, robust controllers that have been designed for hydraulic actuators based on quantitative feedback theory (QFT) have shown satisfactory performance, their stability is limited to certain set of inputs-outputs. This paper explores, for the first time, the stability of a QFT controller using stability theorem of Takagi-Sugeno (T-S) fuzzy systems. To do this, first the hydraulic closed-loop system is represented by a T-S fuzzy model that is formed through a nonlinear combination of some local linear models. Next, the stability of the resulting T-S fuzzy system is analyzed simply by stability analysis of its local linear models. This approach is used to study the stability of a QFT position controller previously developed for hydraulic actuators. Results show guaranteed stability of the QFT controller over a wide range of operation and in the presence of parametric uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.