Abstract

We analyse the linear stability of self-similar shallow, two-dimensional and axisymmetric gravity currents of a viscous power-law non-Newtonian fluid in a porous medium. The flow domain is initially saturated by a fluid lighter than the intruding fluid, whose volume varies with time astα. The transition between decelerated and accelerated currents occurs atα= 2 for two-dimensional and atα= 3 for axisymmetric geometry. Stability is investigated analytically for special values ofαand numerically in the remaining cases; axisymmetric currents are analysed only for radially varying perturbations. The two-dimensional currents are linearly stable forα< 2 (decelerated currents) with a continuum spectrum of eigenvalues and unstable forα= 2, with a growth rate proportional to the square of the fluid behavior index. The axisymmetric currents are linearly stable for anyα< 3 (decelerated currents) with a continuum spectrum of eigenvalues, while forα= 3 no firm conclusion can be drawn. Forα> 2 (two-dimensional accelerated currents) andα> 3 (axisymmetric accelerated currents) the linear stability analysis is of limited value since the hypotheses of the model will be violated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.