Abstract

This paper studies the stability analysis of the decentralized event-triggered H∞ control with communication delays using the quadratic convex approach. Unlike the decentralized event-triggered mechanism (ETM), which only uses the information from the sensor itself by considering the communication topology of the wireless sensor network, a more general decentralized ETM is first proposed by using the information from both the sensor itself and its neighbours. Then, a time-delay system model with parameters of the decentralized ETM, directed graph information, communication delays and external disturbances is presented. In addition, novel delay-dependent asymptotic stability criteria are derived by using the augmented Lyapunov–Krasovski functional (LKF), which contains the cross terms of variables and quadratic terms multiplied by a higher degree scalar function. Unlike some prior results using the first-order convex combination property, our derivation applies the quadratic convex approach with the augmented LKF, which results in less conservatism. Moreover, sufficient conditions for the co-design of the controller and the decentralized ETM are obtained. Finally, numerical examples confirm the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.