Abstract

Summary The use of wolbachia-infected mosquitoes to stop the spread of zika virus disease is modeled and analyzed. The model consists of a system of 10 ordinary differential equations which describes the dynamics of the disease in the human population, a wolbachia-free Aedes aegypti population, and a wolbachia-infected Aedes aegypti population used for disease control. A stability analysis of the disease-free equilibrium is conducted, which shows that it is both locally and globally asymptotically stable when the reproduction number is less than one. The result of the stability analysis shows that the spread of zika virus disease can be stopped, irrespective of the initial sizes of the infected human and mosquito populations, when wolbachia-infected Aedes aegypti are introduced in the area where the disease is endemic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.