Abstract

In this paper we analyse stability of nonlinear fractional order delay differential equations of the form $D^{\alpha} y(t) = a f\left(y(t-\tau)\right) - b y(t)$ , where D α is a Caputo fractional derivative of order 0 < α ≤ 1. We describe stability regions using critical curves. To explain the proposed theory, we discuss fractional order logistic equation with delay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.