Abstract

Amino acid mutations that improve protein stability and rigidity can accompany increases in binding affinity. Therefore, conserved amino acids located on a protein surface may be successfully targeted by antibodies. The quantitative deep mutational scanning approach is an excellent technique to understand viral evolution, and the obtained data can be utilized to develop a vaccine. However, the application of the approach to all of the proteins in general is difficult in terms of cost. To address this need, we report the construction of a deep neural network-based program for sequence-based prediction of supersecondary structure codes (SSSCs), called SSSCPrediction (SSSCPred). Further, to predict conformational flexibility or rigidity in proteins, a comparison program called SSSCPreds that consists of three deep neural network-based prediction systems (SSSCPred, SSSCPred100, and SSSCPred200) has also been developed. Using our algorithms we calculated here shows the degree of flexibility for the receptor-binding motif of SARS-CoV-2 spike protein and the rigidity of the unique motif (SSSC: SSSHSSHHHH) at the S2 subunit and has a value independent of the X-ray and Cryo-EM structures. The fact that the sequence flexibility/rigidity map of SARS-CoV-2 RBD resembles the sequence-to-phenotype maps of ACE2-binding affinity and expression, which were experimentally obtained by deep mutational scanning, suggests that the identical SSSC sequences among the ones predicted by three deep neural network-based systems correlate well with the sequences with both lower ACE2-binding affinity and lower expression. The combined analysis of predicted and observed SSSCs with keyword-tagged datasets would be helpful in understanding the structural correlation to the examined system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.