Abstract

AMS2, a multicopy suppressor for the cpn1 (SpCENP-A) mutant, functions to specifically regulate histone genes transcription and chromosome segregation. As a cell-cycle-regulated GATA transcription factor in eukaryotic organisms, little research has been done on the role of AMS2 protein in pathogenic fungi. In Sclerotinia sclerotiorum, Ssams2 (SS1G_03252) encodes a protein which has been predicted to contain GATA-box domain. Here, Ssams2-silenced strains with significantly reduced Ssams2 gene expression levels exhibited defect in hyphal growth, hyphal branching patterns, compound appressoria differentiation and the oxalic acid production compared to the wild-type (WT) strain. By common bean leaves infection assays, we identified the role of Ssams2 in full virulence. Furthermore, the numbers of cell nucleus in the same length of mycelium in Ssams2-silenced transformants were significantly less than that in the WT strain. The expression levels of histone genes and cell cycle genes in transformants were down-regulated significantly in the RNAi strains. Taken together, our work suggests that the TF SsAMS2 is required for growth, appressoria formation, virulence, and chromosome segregation in S. sclerotiorum.

Highlights

  • The Leotiomycetes fungus Sclerotinia sclerotiorum (Lib.) de Bary is a notorious plant pathogen, it infects over 600 plant species and incites rapid host tissue maceration in a non-discriminant manner (Liang and Rollins, 2018)

  • The results displayed that GATA boxcontaining protein (SS1G_03252) is classed with the AMS2 transcription factor (TF) (Figures 1A,B)

  • The results indicate that the Ssams2 was downregulated expression during the sclerotia and apothecium stages (Supplementary Figure S1)

Read more

Summary

Introduction

The Leotiomycetes fungus Sclerotinia sclerotiorum (Lib.) de Bary is a notorious plant pathogen, it infects over 600 plant species and incites rapid host tissue maceration in a non-discriminant manner (Liang and Rollins, 2018). Economical crops such as rape, soybean, sunflower, lettuce can be infected by S. sclerotiorum (Boland and Hall, 1994). Sticky mucilage around the infection cushions increase the adhesion of S. sclerotiorum hyphae (Tariq and Jeffries, 1984), and thin penetration pegs originate from compound appressorium can perforate plant cuticle (Huang et al, 2008; Xiao et al, 2014). If the hyphae growth, OA production or the appressorium differentiation were blocked, Sclerotinia diseases could be controlled effectively

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.