Abstract
The mammalian SWI/SNF complex is an evolutionarily conserved ATP-dependent chromatin remodeling complex that consists of nine or more components. SRG3, a murine homologue of yeast SWI3, Drosophila MOIRA, and human BAF155, is a core component of the murine SWI/SNF complex required for the regulation of transcriptional processes associated with development, cellular differentiation, and proliferation. Here we report that SRG3 interacts directly with other components of the mammalian SWI/SNF complex such as SNF5, BRG1, and BAF60a. The SWIRM domain and the SANT domain were required for SRG3-SNF5 and SRG3-BRG1 interactions, respectively. In addition, SRG3 stabilized SNF5, BRG1, and BAF60a by attenuating their proteasomal degradation, suggesting its general role in the stabilization of the SWI/SNF complex. Such a stabilization effect of SRG3 was not only observed in the in vitro cell system, but also in cells isolated from SRG3 transgenic mice or knock-out mice haploinsufficient for the Srg3 gene. Taken together, these results suggest the critical role of SRG3 in the post-transcriptional stabilization of the major components of the SWI/SNF complex.
Highlights
The mammalian SWI/SNF complexes are evolutionarily conserved ATP-dependent chromatin remodeling complexes, which use the energy of ATP hydrolysis to mobilize nucleosomes and remodel chromatin structure [1, 2]
We found that the expression level of SRG3 is down-regulated after positive selection of developing thymocytes and this is critical in determining glucocorticoid sensitivity in T cells [15, 19, 20]
SRG3 Interacts Directly with Major Components of the SWI/ SNF Complex—To study the role of SRG3 in the protein-protein interactions among the components of the mammalian SWI/SNF complex, we analyzed the direct interactions between SRG3 and other major components of the SWI/SNF complex by yeast two-hybrid assay
Summary
The mammalian SWI/SNF complexes are evolutionarily conserved ATP-dependent chromatin remodeling complexes, which use the energy of ATP hydrolysis to mobilize nucleosomes and remodel chromatin structure [1, 2]. We report that SRG3 interacts directly with other components of the mammalian SWI/SNF complex such as SNF5, BRG1, and BAF60a.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.