Abstract

We study numerically how multiple deformable capsules squeeze into a constriction. This situation is largely encountered in microfluidic chips designed to manipulate living cells, which are soft entities. We use fully three-dimensional simulations based on the lattice Boltzmann method to compute the flow of the suspending fluid and on the immersed boundary method to achieve the two-way fluid-structure interaction. The mechanics of the capsule membrane elasticity is computed with the finite-element method. We obtain two main states: continuous passage of the particles and their blockage that leads to clogging the constriction. The transition from one state to another is dictated by the ratio between the size of the capsules and the constriction width and by the capsule membrane deformability. The latter is found to enhance particle passage through narrower constrictions, where rigid particles with similar diameter are blocked and lead to clogging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.