Abstract

The rheological properties of synovial fluid and hyaluronate (HA) solutions have been studied using a variety of viscometers and rheometers. These devices measure the viscosity of the fluid's resistance to shearing forces, which is useful when studying the lubrication and frictional properties of movable joints. Less commonly used is a squeeze-film fluid test, mechanistically similar to when two joint surfaces squeeze interposed fluid. In our study, we used squeeze-film tests to determine the rheological response of normal bovine synovial fluid and 10mg/ml HA-based solutions, Hyalgan/Hyalovet, commercially available 500-700kDa HA viscosupplements, and a 1000kDa sodium hyaluronate (NaHy) solution. We found similar rheological responses (fluid thickness, viscosity, viscosity-pressure relationship) for all three fluids, though synovial fluid's minimum squeeze-film thickness was slightly thicker. Squeeze-film loading speed did not affect these results. Different HA concentrations and molecular weights also did not have a significant or consistent effect on the squeeze-film responses. An unexpected result for the HA-solutions was a linear increase in minimum fluid-film thickness with increasing initial fluid-film thickness. This result was attributed to faster gelling of thicker HA-solutions, which formed at a lower squeeze-film strain and higher squeeze-film strain rate compared to thinner layers. Also included is a review of the literature on viscosity measurements of synovial fluid and HA solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.