Abstract

k-mer-based algorithms have become increasingly popular in the processing of high-throughput sequencing data. These algorithms span the gamut of the analysis pipeline from k-mer counting (e.g. for estimating assembly parameters), to error correction, genome and transcriptome assembly, and even transcript quantification. Yet, these tasks often use very different k-mer representations and data structures. In this article, we show how to build a k-mer-counting and multiset-representation system using the counting quotient filter, a feature-rich approximate membership query data structure. We introduce the k-mer-counting/querying system Squeakr (Simple Quotient filter-based Exact and Approximate Kmer Representation), which is based on the counting quotient filter. This off-the-shelf data structure turns out to be an efficient (approximate or exact) representation for sets or multisets of k-mers. Squeakr takes 2×-4.3× less time than the state-of-the-art to count and perform a random-point-query workload. Squeakr is memory-efficient, consuming 1.5×-4.3× less memory than the state-of-the-art. It offers competitive counting performance. In fact, it is faster for larger k-mers, and answers point queries (i.e. queries for the abundance of a particular k-mer) over an order-of-magnitude faster than other systems. The Squeakr representation of the k-mer multiset turns out to be immediately useful for downstream processing (e.g. de Bruijn graph traversal) because it supports fast queries and dynamic k-mer insertion, deletion, and modification. https://github.com/splatlab/squeakr available under BSD 3-Clause License. ppandey@cs.stonybrook.edu. Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.