Abstract

Bacteria use long proteinaceous appendages, called fimbriae or pili, to adhere to the surfaces of their host cells. Widely distributed among the Enterobacteriacae are type 1 fimbriae that mediate mannose-specific bacterial adhesion through the lectin FimH, located at the fimbrial tips. It is possible to design synthetic mannosides such that they show high affinity for FimH and can thus inhibit mannose-specific bacterial adhesion in a competitive manner. It has been found that mannosidic squaric acid monoamides serve especially well as inhibitors of type 1 fimbriae-mediated bacterial adhesion, but it has remained unclear whether this effect is due to specific inhibition of the bacterial lectin FimH or to unspecific bioconjugation between the lectin's carbohydrate binding site and a squaric acid monoamide. A bioconjugation reaction would result in a covalently crosslinked squaric acid diamide. Here it is shown that covalent inhibition of FimH by mannosidic squaric acid derivatives is very unlikely and that compounds of this type serve rather as excellent specific candidates for low-molecular-weight inhibitors of bacterial adhesion. This has been verified by testing the properties of glycosidic squaric acid monoamides in diamide formation, by two different adhesion assays with a series of selected control compounds, and by molecular docking studies that further support the results obtained in the bioassays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.