Abstract

The cavity length of short-cavity Fabry-Perot (FP) sensors cannot be effectively interrogated using the conventional peak-to-peak method if the spectrum of the exciting source is not wide enough. In this paper, we propose a squared peak-to-peak algorithm for interrogation of short-cavity fiber-optic FP sensors. By squaring the DC-filtered reflection spectrum of an FP sensor in the frequency domain, we produce an additional peak, with which the cavity length of a sensor can be estimated using the same calculations as performed with the conventional peak-to-peak method. For investigation of the feasibility of this technique, we conducted simulations and practical experiments analyzing fiber-optic FP sensors with cavity lengths in the range of 15-25 µm. The maximum error in cavity length estimated using the proposed algorithm in experiments was 0.030 µm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.