Abstract

A series of squaramide-based heteroditopic [2]rotaxanes consisting of isophthalamide macrocycle and squaramide axle components are synthesized using an alkali metal cation template-directed stoppering methodology. This work highlights the unprecedented sodium cation template coordination of the Lewis basic squaramide carbonyls for interlocked structure synthesis. Extensive quantitative 1 H NMR spectroscopic anion and ion-pair recognition studies reveal the [2]rotaxane hosts are capable of cooperative sodium halide ion-pair mechanical bond axle-macrocycle component recognition, eliciting up to 20-fold enhancements in binding strengths for bromide and iodide, wherein the Lewis basic carbonyls and Lewis acidic NH hydrogen bond donors of the squaramide axle motif operate as cation and anion receptive sites simultaneously in an ambidentate fashion. Notably, varying the length and nature of the polyether cation binding unit of the macrocycle component dramatically influences the ion-pair binding affinities of the [2]rotaxanes, even overcoming direct contact NaCl ion-pair binding modes in polar organic solvents. Furthermore, the cooperative ion-pair binding properties of the squaramide-based heteroditopic [2]rotaxanes are exploited to successfully extract solid sodium halide salts into organic media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.