Abstract

We model the sputtering of a LiF crystal induced by swift-ion impact. The impinging ion creates a trail of doubly ionized F+ ions, while simultaneously the corresponding electrons are set free. Ions move according to molecular dynamics, while excited electrons are treated by a particle-in-cell scheme. We treat the recombination time of electrons as a free parameter in our model. We find that the energy distribution of sputtered ions consists of 2 groups: a low-energy group centered at <1eV, and a high-energy group at 7–8eV. Fast ions (mainly Li+) are emitted early; these charge the surface negatively. Later, larger cluster ions and also neutral LiF molecules are emitted. Emission occurs at low angles to the surface normal. A jet along the normal direction can be observed, which is due to the electric field building up at the track surface. With increasing recombination time, processes are colder; sputtering decreases and the non-thermal jet structure becomes stronger.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.