Abstract

We herein present the preparation of short, bulky cationic thiolate (thiocholine)-protected fluorescent Au nanoclusters via sputter deposition over a liquid polymer matrix. The obtained Au nanoclusters showed near-infrared fluorescence and had an average core diameter of 1.7 ± 0.6 nm, which is too large compared to that of the reported fluorescent Au nanoclusters prepared via chemical means. We revealed the mechanism of formation of this unique material using single-particle electron microscopy, optical measurements, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography fractionations. The noncrystallized image was observed via single-particle high-angle annular dark-field scanning transmission electron microscopy observations and compared with chemically synthesized crystalline Au nanoparticle with the same diameter, which demonstrated the unique structural characteristic speculated via XPS. The size fractionation and size-dependent fluorescence measurement, together with other observations, indicated that the nanoclusters most probably contained a mixture of very small fluorescent species in their aggregated form and were derived from the sputtering process itself and not from the interaction between thiol ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.