Abstract

For most of the discretization schemes, the numerical approximation of shallow-water models is a delicate problem. Indeed, the coupling between the momentum and the continuity equations usually leads to the appearance of spurious solutions and to anomalous dissipation/dispersion in the representation of the fast (Poincaré) and slow (Rossby) waves. In order to understand these difficulties and to select appropriate spatial discretization schemes, Fourier/dispersion analyses and the study of the null space of the associated discretized problems have proven beneficial. However, the cause of spurious oscillations and reduced convergence rates, that have been detected for most of mixed-order finite element shallow-water formulations, in simulating classical problems of geophysical fluid dynamics, is still an open question. The aim of the present study is to show that when spurious inertial solutions are present, they are mainly responsible for the aforementioned problems. Further, a criterion is found which determines the existence and the number of spurious inertial solutions. As it is delicate to cure spurious inertial modes, a class of possible discretization schemes is proposed, that is not affected by such spurious solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.