Abstract

Previously we showed that the yeast proteins Spt16 (Cdc68) and Pob3 are physically associated, and interact physically and genetically with the catalytic subunit of DNA polymerase alpha, Pol1 [Wittmeyer and Formosa (1997) Mol. Cell. Biol. 17, 4178-4190]. Here we show that purified Spt16 and Pob3 form a stable, abundant, elongated heterodimer and provide evidence that this is the functional form of these proteins. Genetic interactions between mutations in SPT16 and POB3 support the importance of the Spt16-Pob3 interaction in vivo. Spt16, Pob3, and Pol1 proteins were all found to localize to the nucleus in S. cerevisiae. A portion of the total cellular Spt16-Pob3 was found to be chromatin-associated, consistent with the proposed roles in modulating chromatin function. Some of the Spt16-Pob3 complex was found to copurify with the yeast DNA polymerase alpha/primase complex, further supporting a connection between Spt16-Pob3 and DNA replication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.