Abstract

The wetting behaviour of a Cu–40 at.% Si alloy, non-reactive with SiC, on oxidized (0001) faces of α-SiC single crystals is studied at temperatures close to the melting point of copper by the “dispensed drop” technique under high vacuum. The experiments focused on wetting kinetics to determine the mechanisms controlling the rate of spreading under conditions allowing for “in situ” deoxidation of silicon carbide. It is shown that spreading occurs in three stages: (i) an initial stage consisting of a rapid spreading of the alloy on the oxidized SiC up to a contact angle which is close to that on vitreous silica, (ii) a second stage with a zero spreading rate during which the alloy goes through the oxide layer by dissolution near the triple line allowing an intimate contact between the alloy and the SiC surface to be established, and (iii) a final stage during which the alloy spreads with a constant rate up to a contact angle equal to that of clean SiC. These results are interpreted on the basis of a dissolution–diffusion–evaporation process occurring in the vicinity of the solid–liquid–vapour triple line.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.