Abstract
The explicit closed-form expressions for the beam width and angular spread of multi-Gaussian Schell-model vortex (MGSMV) beams propagating through atmospheric turbulence are derived in this paper. The spreading and evolution behavior of coherent vortices of MGSMV beams in non-Kolmogorov turbulence are investigated quantitatively by some typical numerical examples, where the evolution behavior of coherent vortices is stressed in particular. It is illustrated that MGSMV beams are more resistant to atmospheric turbulence than multi-Gaussian Schell-model (MGSM) non-vortex beams. By increasing the beam index of MGSMV beams, the deleterious turbulence effects can be reduced gradually. As MGSMV beams propagate in non-Kolmogorov turbulence, the position and number of coherent vortices are changeable. The impact of the beam index and fluctuations of atmospheric turbulence on the conservation distance of the topological charge is also explored in depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.