Abstract

Abstract For gas separation through laminar-structured graphene oxide (GO) membranes, precise nanostructure manipulation is of critical significance for the acquirement of high performance. In this study, facile engineering of GO membranes is realized by combining spraying and solvent evaporation-induced assembly technique. Disordered-to-ordered and porous-to-compact GO membrane structures can be finely and conveniently manipulated via controlling the spraying times and evaporation rate during GO assembly. The as-fabricated GO membranes possess the optimal gas separation performance with H2/CO2 selectivity of 20.9 and H2 permeance of 2.7 × 10−8 mol Pa−1 m−2 s−1, which exceeds the upper bound of polymeric membranes. A probable transport mechanism for different gas molecules is applied to clarify the relationships between membrane structure and gas permeation. This study may explore an efficient and facile approach to fabricate defect-free GO membranes with high controllability and practicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.