Journal of Membrane Science | VOL. 601
Read
Spray-assisted layer-by-layer self-assembly of tertiary-amine-stabilized gold nanoparticles and graphene oxide for efficient CO2 capture
Abstract
Abstract Carbon capture and storage (CCS) is the process of capturing carbon dioxide (CO2) produced from the combustion of fossil fuels. CO2 is a major contributor to global warming and should be removed after combustion. The objective of this research is to design a CO2 capture membrane consisting of tertiary-amine-stabilized gold nanoparticles (Au NPs), graphene oxide (GO), and polyelectrolytes. A high CO2 capture ability is most important for designing a CO2 capture membrane that can maintain a high gas permeance. Multilayer films were fabricated using an automatic spray-assisted layer-by-layer (LbL) machine. The polar affinity of polyelectrolytes assisted the CO2 capture of tertiary amines. The randomly oriented and loosely stacked GO layers not only helped align the Au NPs in the polyelectrolyte matrix, but also helped maintain the permeance of N2. Thus, we successfully fabricated a CO2 adsorptive multilayer nanocoating with a maximum CO2/N2 selectivity of 48.48 while maintaining the N2 permeance at 1204.25 GPU.
Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.
Climate change Research Articles published between Aug 08, 2022 to Aug 14, 2022
Introduction: There is no consensus on the policies that should be seen as implicitly pricing carbon (see World Bank (2019a) for a discussion). The OE...
Read MoreGender Equality Research Articles published between Aug 08, 2022 to Aug 14, 2022
I would like to thank Anna Khakee, Federica Zardo and Ragnar Weilandt for their very useful comments as well as the participants of the workshop of 21...
Read MoreDisclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.