Abstract

ABSTRACTWe study the molecular-scale features of the solid surface that result in the spontaneous motion of a nanodroplet due to the periodic variation of temperature. We first employ a thermodynamic model to predict the variation of solid–fluid interfacial properties that can result in the above motion. The model identifies a composite (surface couple) made of two surfaces that are characterised by a large difference between the entropic parts of the solid–liquid interfacial free energies. In order to understand the molecular-scale features of the two surfaces that may form a surface couple, we performed grand canonical Monte Carlo simulations of Lennard Jones fluid and crystalline surfaces made of Lennard Jones-like atoms. We then used the cumulant expansions of the perturbation formulas to divide the interfacial entropy into two parts: The one that is directly affected by the solid–fluid attraction (direct part), and the other (indirect part) that is indirectly affected by the solid–fluid attraction via the alteration of interfacial fluctuations. Our results indicate that two surfaces form a surface couple if the differences between their chemical natures lead to large differences in the indirect part of the interfacial entropy, while the direct part remains relatively unaffected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.