Abstract

We consider the interaction of a ferromagnetic spinor Bose-Einstein condensate with a magnetic-field gradient. The magnetic-field gradient realizes a spin-position coupling that explicitly breaks time-reversal symmetry and space parity , but preserves the combined symmetry. We observe, using numerical simulations, a phase transition spontaneously breaking this remaining symmetry. The transition to a low-gradient phase, in which gradient effects are frozen out by the ferromagnetic interaction, suggests the possibility of high-coherence magnetic sensors unaffected by gradient dephasing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.