Abstract

Spontaneous light emission is known to be affected by the local density of states and enhanced when coupled to a resonant cavity. Here, we report on an experimental study of silicon-vacancy (SiV) color center fluorescence and spontaneous Raman scattering from subwavelength diamond particles supporting low-order Mie resonances in the visible range. For the first time to our knowledge, we have measured the size dependences of the SiV fluorescence emission rate and the Raman scattering intensity from individual diamond particles in the range from 200 to 450 nm. The obtained dependences reveal a sequence of peaks, which we explicitly associate with specific multipole resonances. The results are in agreement with our theoretical analysis and highlight the potential of intrinsic optical resonances for developing nanodiamond-based lasers and single-photon sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.