Abstract

AbstractThe results of SPM-based localized electrical examination of precipitation hardened Waspaloy microstructures using Electrostatic Force Microscopy (EFM) and Current-Atomic Force Microscopy (I-AFM) are reported herein. The measurements were conducted on two differently etched specimens with the same initial microstructure. Selective etching by preferentially removing the γ′ or the γ phase resulted in a non-uniform surface topography leaving the less reactive phase standing in relief relative to the depressed phase. The presence of a non-uniform surface topography affected the measured EFM response by causing an inhomogeneous surface voltage distribution. A non-linear tip-surface interaction could have further complicated the measured EFM response by making it non-localized. The EFM phase obeyed a supplementary behavior upon reversing the polarity of the DC bias. Using I-AFM, the tip current was found to be the highest at γ-γ′ interphase boundaries, which was attributed to the relaxation of the lattice atoms in the relief zone formed upon etching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.