Abstract

As applied to the problem of asymptotic integration of linear systems of ordinary differential equations, we propose a reduction of order method that allows one to effectively construct solutions indistinguishable in the growth/decrease rate at infinity. In the case of a third-order equation, we use the developed approach to answer Bellman’s problem on splitting WKB asymptotics of subdominant solutions that decrease at the same rate. For a family of Wigner–von Neumann type potentials, the method allows one to formulate a selection rule for nonresonance values of the parameters (for which the corresponding second-order equation has a Jost solution).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.