Abstract
A new hybrid numerical scheme of combining an E-CUSP (Energy-Convective Upwind and Split Pressure) method for the fluid part and the Constrained Transport (CT) for the magnetic induction part is proposed. In order to avoid the occurrence of negative pressure in the reconstructed profiles and its updated value, a positivity preserving method is provided. Furthermore, the MHD equations are solved at each physical time step by advancing in pseudo time. The use of dual time stepping is beneficial in the computation since the use of dual time stepping allows the physical time step not to be limited by the corresponding values in the smallest cell and to be selected based on the numerical accuracy criterion. This newly established hybrid scheme combined with positivity preserving method and dual time technique has demonstrated the accurateness and robustness through numerical experiments of benchmark problems such as the 2D Orszag-Tang vortex problem and the 3D shock-cloud interaction problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.