Abstract

Semiparametric models combining both non-parametric trends and small area random effects are now currently being investigated in small area estimation (SAE). These models can prevent bias when the functional form of the relationship between the response and the covariates is unknown. Furthermore, penalized spline regression can be a good tool to incorporate non-parametric regression models into the SAE techniques, as it can be represented as a mixed effects model. A penalized spline model is considered to analyze trends in small areas and to forecast future values of the response. The prediction mean squared error (MSE) for the fitted and the predicted values, together with estimators for those quantities, are derived. The procedure is illustrated with real data consisting of average prices per squared meter of used dwellings in nine neighborhoods of the city of Vitoria, Spain, during the period 1993–2007. Dwelling prices for the next five years are also forecast. A simulation study is conducted to assess the performance of both the small area trend estimator and the prediction MSE estimators. The results confirm a good behavior of the proposed estimators in terms of bias and variability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.