Abstract

The amount of iron droplets ejected in the BOF affects on metallic yield, refactory wear and the progress of decarburisation. The purpose of this study was to investigate the effect of lance height, lance nozzle angle, lance position, top gas flow rate, bottom blowing and foamy slag on splashing and spitting. A new cold model method for investigating the effects of above-mentioned parameters on the location and quantity of liquid splashed on the walls of the model was utilised. According to the model tests, reduction of the nozzle angle increased the total amount of splashing and spitting considerably. Consequently, reduced productivity due to an increase in metal losses, skulling of the cone and converter mouth and further increased time for skull removal is expected. Introduction of bottom blowing increased splashing significantly on lower parts of the vessel. Lance position has an effect on total amount of splashing when bottom blowing is used. The presence of even minor foam layer on water surface reduced the amount of total splashing significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.