Abstract

Real time MR thermometry, usually based on the proton-resonance frequency shift, is a key aspect of MR-guided focused ultrasound procedures. The desire to monitor the entire sonicated volume has led the field towards the development of rapid, 3D methods; however, acquiring fully sampled 3D volumetric data to monitor heating is time consuming, and so fast methods must be developed in order to meet the spatial and temporal requirements for adequate monitoring of thermal therapy. The data acquisition efficiency of spiral trajectories is higher than that of Cartesian scanning. Therefore, spiral trajectories are an attractive way to improve temporal resolution while maintaining spatial resolution in MR thermometry. We have recently reported that a variation on the traditional spiral-out trajectory, called the redundant spiral-in/out trajectory, has certain advantages in terms of off-resonance performance. We hypothesize this trajectory to also be advantageous for PRF thermometry. Here, we have implemented this –in/out trajectory, compared its performance in terms of the focal spot size and position shift versus a Cartesian and spiral-out acquisition, and have generated rapid 3D temperature maps using the method.

Highlights

  • Background/introduction Real time MR thermometry, usually based on the protonresonance frequency shift, is a key aspect of MR-guided focused ultrasound procedures

  • We have recently reported that a variation on the traditional spiral-out trajectory, called the redundant spiralin/out trajectory, has certain advantages in terms of off-resonance performance. We hypothesize this trajectory to be advantageous for PRF thermometry

  • All experiments were performed in a gel phantom, using an MR-compatible FUS system (RK-100, FUS Instruments Inc., Toronto) in a 3T whole-body scanner (Siemens Trio). 2D temperature maps were acquired with a GRE sequence with TR/TE = 15/6 ms, FA = 25-degrees, FOV = 64 mm2, matrix size 64 x 64

Read more

Summary

Introduction

Background/introduction Real time MR thermometry, usually based on the protonresonance frequency shift, is a key aspect of MR-guided focused ultrasound procedures. The data acquisition efficiency of spiral trajectories is higher than that of Cartesian scanning. Spiral trajectories are an attractive way to improve temporal resolution while maintaining spatial resolution in MR thermometry.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.