Abstract

We present a theory of the effect of spin–orbit coupling on optical properties of triangular graphene quantum dots (TGQD). TGQDs with zigzag edges exhibit a degenerate band of states at the Fermi level. For the charge neutral TGQD, the shell is expected to be half–filled by spin polarised electrons leading to finite magnetisation. Using four–band tight–binding and effective Kane–Mele models, we show that, if the TGQD is spin polarised, the low energy optical absorption spectrum reveals two distinct peaks corresponding to left and right circularly polarised light while the unpolarised TGQD shows only one peak. This allows optical detection of spin polarisation, its direction and the strength of spin–orbit coupling in TGQDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.