Abstract

Zn2TiO4 spinel (Zn2TiO4-Sp) was synthesized by a solid-state reaction method (1573 K, room P and 72 h) and quasi-hydrostatically compressed to ~24 GPa using a DAC coupled with a synchrotron X-ray radiation (ambient T). We found that the Zn2TiO4-Sp was stable up to ~21 GPa and transformed to another phase at higher P. With some theoretical simulations, we revealed that this high-P phase adopted the CaTi2O4-type structure (Zn2TiO4-CT). Additionally, the isothermal bulk modulus (K T) of the Zn2TiO4-Sp was experimentally obtained as 156.0(44) GPa and theoretically obtained as 159.1(4) GPa, with its first pressure derivative $$K_{\text{T}}^{'}$$ as 3.8(6) and 4.37(4), respectively. The volumetric and axial isothermal bulk moduli of the Zn2TiO4-CT were theoretically obtained as K T = 150(2) GPa ( $$K_{\text{T}}^{'}$$ = 5.4(2); for the volume), K T-a = 173(2) GPa ( $$K_{{\text{T-}}a}^{'}$$ = 3.9(1); for the a-axis), K T-b = 74(2) GPa ( $$K_{{\text{T-}}b}^{'}$$ = 7.0(2); for the b-axis), and K T-c = 365(8) GPa ( $$K_{{\text{T-}}c}^{'}$$ = 1.5(4); for the c-axis), indicating a strong elastic anisotropy. The Zn2TiO4-CT was found as ~10.0 % denser than the Zn2TiO4-Sp at ambient conditions. The spinel and post-spinel phase assemblages for the Zn2TiO4 composition at high T have been deduced as Zn2TiO4-Sp, ZnTiO3-ilmenite + ZnO-wurtzite, ZnTiO3-ilmenite + ZnO-rock salt, ZnTiO3-perovskite + ZnO-rock salt, and Zn2TiO4-CT as P increases, which presumably implies a potential stability field for a CT-type Mg2SiO4 at very high P.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.