Abstract
Spinal acute opioid tolerance remains mechanistically undercharacterized. Expanded clinical use of direct spinal administration of opioids and other analgesics indicates that studies to further understand spinal mechanisms of analgesic tolerance are warranted. Rodent models of spinal administration facilitate this objective. Specifically, acute spinal opioid tolerance in mice presents a plasticity-dependent, rapid, and efficient opportunity for evaluation of novel clinical agents. Similarities between the pharmacology of acute and chronic spinal opioid tolerance, neuropathic pain, and learning and memory suggest that this model may serve as a high through-put predictor of bioactivity of novel plasticity-modifying compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.