Abstract

Although 5-HT is clearly involved in spinal analgesia, its mode of action remains obscure, perhaps because it has multiple and often opposing effects mediated by its multiple receptor subtypes. This investigation uses selective agonists and antagonists directed at the most recently defined class of 5-HT receptors (5-HT3 receptors) in behavioral and electrophysiological studies of nociception in the spinal cord of rodents. The results demonstrate uniformly inhibitory effects of a selective 5-HT3 agonist on responses to noxious stimuli. Intrathecally administered 2-methyl 5-HT produced dose-dependent antinociception in the tail-flick test and inhibited behaviors elicited by intrathecally administered agonists for excitatory amino acid and neurokinin receptors, namely NMDA and substance P (SP). All 20 dorsal horn neurons we examined, which projected to the brain and responded to both noxious stimuli and NMDA, were inhibited in a current-related manner by this 5-HT3 agonist applied iontophoretically. Both the behavioral and electrophysiological effects were blocked not only by the 5-HT3 antagonists zacopride and ICS 205-930, but also by antagonists to the inhibitory amino acid GABA. Therefore, 5-HT via an action at 5-HT3 receptors may evoked release of GABA, which may in turn inhibit nociceptive transmission at a site postsynaptic to terminals of primary afferent fibers. If the descending serotonergic analgesic system in humans operates similarly, understanding it may enable the development of new nonopioid, nonaddictive analgesics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.